Queuing Formulas

Suppose that customers enter a bank at random times and must be served by a single teller. We will model the customers' entrance times by a Poisson process with parameter λ and the teller's time serving a customer by a Poisson process with parameter μ, where $\lambda<\mu$.

Let p_{n} be the long term probability that there are n customers in the bank, either with the teller or in line. Then let

$$
\begin{aligned}
& I_{0}=[t, t+\mathrm{d} t) \\
& I_{1}=[t+\mathrm{d} t, t+2 \mathrm{~d} t) .
\end{aligned}
$$

where t is a randomly chosen time. Then we have

$$
\begin{array}{rlrl}
\mathrm{P}\left(n=0 \text { in } I_{1}\right) & =\mathrm{P}\left(n=0 \text { in } I_{0}\right) & \mathrm{P}(0 \text { customers enter }) & +\mathrm{P}\left(n=1 \text { in } I_{0}\right) \\
p_{0} & =p_{0} . & \mathrm{P}(1 \text { customer served }) \\
(1-\lambda \mathrm{d} t) & +p_{1} . & \mu \mathrm{d} t
\end{array}
$$

from which we get

$$
p_{1}=\frac{\lambda}{\mu} p_{0} .
$$

Similarly we have

$$
p_{1}=p_{2} \cdot \mu \mathrm{~d} t+p_{1} \cdot(1-(\lambda+\mu) \mathrm{d} t)+p_{0} \cdot \lambda \mathrm{~d} t
$$

because $(\lambda+\mu) \mathrm{d} t$ is the probability that either the teller finishes with a customer or a new customer enters the bank during I_{0}. This yields a similar result, namely

$$
p_{2}=\frac{\lambda}{\mu} p_{1} .
$$

In fact the algebra is the same for any n, so we get

$$
\text { for all n, } \quad \begin{aligned}
p_{n+1} & =\frac{\lambda}{\mu} p_{n} \\
p_{n} & =\left(\frac{\lambda}{\mu}\right)^{n} p_{0} .
\end{aligned}
$$

Since the p_{n} are probabilities their sum must be 1 .

$$
1=\sum_{n=0}^{\infty} p_{n}=p_{0} \frac{1}{1-\frac{\lambda}{\mu}}
$$

so that

$$
p_{0}=\frac{\mu-\lambda}{\mu}=1-\frac{\lambda}{\mu} .
$$

So the general formula for p_{n} is

$$
p_{n}=\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right) .
$$

Now let W be the total time a customer spends in the waiting line before seeing the teller. Since the teller takes an average of $1 / \mu$ minutes to serve each customer, we get

$$
\begin{array}{rc}
\mathrm{E}(W \mid n=0) & =0 \\
\mathrm{E}(W \mid n=1) & =\frac{1}{\mu} \\
\mathrm{E}(W \mid n=2) & =\frac{2}{\mu} \\
& \vdots \\
& \\
\mathrm{E}(W \mid n) & =\frac{n}{\mu} .
\end{array}
$$

Therefore the overall average time spent by a customer in the waiting line is

$$
\begin{aligned}
\mathrm{E}(W) & =\sum_{n=0}^{\infty} p_{n} \frac{n}{\mu} \\
& =\frac{1}{\mu} \sum_{n=0}^{\infty} n\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right) \\
& =\frac{1}{\mu} \frac{\lambda}{\mu}\left(1-\frac{\lambda}{\mu}\right) \sum_{n=0}^{\infty} n\left(\frac{\lambda}{\mu}\right)^{n-1} \\
& =\frac{\lambda}{\mu^{2}}\left(1-\frac{\lambda}{\mu}\right) \frac{1}{\left(1-\frac{\lambda}{\mu}\right)^{2}} \\
& =\frac{\lambda}{\mu} \frac{1}{\mu-\lambda} .
\end{aligned}
$$

This means that the average total time spent in the system (line and teller) is

$$
\begin{aligned}
& \frac{\lambda}{\mu} \frac{1}{\mu-\lambda}+\frac{1}{\mu} \\
= & \frac{\lambda+\mu-\lambda}{\mu(\mu-\lambda)} \\
= & \frac{1}{\mu-\lambda} .
\end{aligned}
$$

So we have shown the following.

$$
\begin{align*}
p_{n} & =\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right) \tag{1}\\
\text { average time in line } & =\frac{\lambda}{\mu} \cdot \frac{1}{\mu-\lambda} \tag{2}\\
\text { average time in bank } & =\frac{1}{\mu-\lambda} \tag{3}
\end{align*}
$$

